№110

\[y = -3\cos(3x + 2) \]

В качестве исходного возьмём график функции \(y = \cos x \). Затем строим график функции \(y = \cos \left(x + \frac{2}{3} \right) \) сдвигом вдоль оси ОХ на \(\frac{2}{3} \) единиц влево. После этого строим график функции \(y = \cos \left(x + \frac{2}{3} \right) \) сжатием вдоль оси в 3 раза. Затем строим \(y = -3\cos(3x + 2) \) растяжением вдоль оси ОУ в 3 раза. И, наконец, строим \(y = -3\cos(3x + 2) \) зеркально отображая последний график относительно оси ОХ.

1) \(y = \cos x \)

2) \(y = \cos(x + 2/3) \)

3) \(y = 3(x + 2/3) \)

4) \(y = -3\cos(3x + 2) \)

5) \(y = -3\cos(3x + 2) \)
Сборник задач по высшей математике Арутюнова Ю.С. вариант 1 контрольная работа 3
Задачи 110, 120, 130, 140

http://kvadromir.com/arutunov_sbornik.html

№ 120

а) \(\lim_{x \to \infty} \frac{8x^5 - 3x^2 + 9}{2x^5 + 2x^2 + 5} \) = \(\lim_{x \to \infty} \frac{4 - \frac{3}{2x^3} + \frac{9}{2x^5}}{1 + \frac{1}{x^3} + \frac{5}{2x^5}} \) = 4

б) \(\lim_{x \to 2} \frac{x - 2}{\sqrt{2x - 2}} = \lim_{x \to 2} \frac{(x - 2) \cdot (\sqrt{2x + 2})}{(\sqrt{2x - 2}) \cdot (\sqrt{2x + 2})} = \lim_{x \to 2} \frac{(x - 2) \cdot (\sqrt{2x + 2})}{2x - 4} = 2 \)

в) \(\lim_{x \to 0} 5x \cdot \cot 3x = \lim_{x \to 0} \cos 3x \cdot \lim_{x \to 0} \frac{5x}{\sin 3x} = \cos 0 \cdot \lim_{x \to 0} \frac{5x}{\sin 3x} = \frac{15}{3} = 5 \)

г) \(\lim_{x \to 3} \left[1 + 3 \cdot (x - 3) \right]^{\frac{6}{3(x-3)}} \)

\(y = \lim_{x \to 3} \frac{1}{3(x-3)} \cdot \Rightarrow x \to 3 \Rightarrow y \to \infty \)

Итак, \(\lim_{x \to 3} \left[1 + 3 \cdot (x - 3) \right]^{\frac{6}{3(x-3)}} = \lim_{y \to \infty} \left[\left(1 + \frac{1}{y} \right)^y \right]^{\frac{6}{y}} = \left[\lim_{y \to \infty} \left(1 + \frac{1}{y} \right)^y \right]^{\frac{6}{y}} = I^6 \)

http://kvadromir.com — физика и математика для заочников
Задачи 110, 120, 130, 140

http://kvadromir.com/arutunov_sbornik.html

 №130

$$f(x) = \frac{1}{13^{5+x}}; \quad x_1 = -5; \quad x_2 = -3$$

$$5 + x \neq 0 \Rightarrow x \neq -5$$

$$D(x) = (-\infty; -5) \cup (-5; +\infty)$$

Данная функция элементарная.

При $$x = -3$$ функция непрерывна, т.к. $$\lim_{x \to 3} 13^{5+x} = \sqrt{13}$$

При $$x = -5$$ функция не определена $$\Rightarrow$$ и $$x = -5$$ - точка разрыва

Найдём пределы слева и справа

$$\lim_{x \to -5^-} f(x) = \lim_{x \to -5^-} 13^{5+x} = 13^{5+(-5)} = 13^0 = 13^{-} = \frac{1}{13^+} = \frac{1}{+\infty} = 0$$

$$\lim_{x \to -5^+} f(x) = \lim_{x \to -5^+} 13^{5+x} = 13^{5+(-5)} = 13^0 = 13^{+\infty} = +\infty$$

$$x = -5$$ - точка разрыва II порядка.

Сделаем чертёж (схематично)

http://kvadromir.com — физика и математика для заочников
Сборник задач по высшей математике Арутюнова Ю.С. вариант 1 контрольная работа 3 Задачи 110, 120, 130, 140

http://kvadromir.com/arutunov_sbornik.html

№140

\[f(x) = \begin{cases}
-2x, & x \leq 0 \\
\sqrt{x}, & 0 < x < 4 \\
1, & x \geq 4
\end{cases} \]

Данная функция задана тремя элементарными функциями, определёнными для различных интервалов изменения \(x \).
На интервале \((-\infty;0)\) и \((4;+\infty)\) функция непрерывна как линейная. На интервале \((0;4)\) функция непрерывна как степенная.

Исследуем на непрерывность в точке \(x = 0 \): \(x = 4 \):
\[
\lim_{{x \to 0^-}} f(x) = \lim_{{x \to 0^-}} (-2x) = 0 - \text{ левосточный предел } f(x) \text{ при } x \to 0 \\
\lim_{{x \to 0^+}} f(x) = \lim_{{x \to 0^+}} \sqrt{x} = 0 - \text{ правосточный предел } f(x) \text{ при } x \to 0 \\
\lim_{{x \to 0}} f(x) = \lim_{{x \to 0}} f(0) = 0, \quad x = 0 \text{ т.е. непрерывности }
\]

\(f(0) = -2x \bigg|_{x=0} = -2*0 = 0 \)

\[
\lim_{{x \to 4^-}} f(x) = \lim_{{x \to 4^-}} \sqrt{x} = 2 - \text{ левосточный предел } f(x) \text{ при } x \to 4 \\
\lim_{{x \to 4^+}} f(x) = \lim_{{x \to 4^+}} f(4) = 1 - \text{ правосточный предел } f(x) \text{ при } x \to 4 \\
\lim_{{x \to 4}} f(x) = \lim_{{x \to 4^-}} \sqrt{x} = \lim_{{x \to 4^+}} f(x) = \lim_{{x \to 4}} f(4) = 1, \quad x = 4 \quad \text{ т.т.точка разрыва I рода}
\]

Строим график:
при \(x \in (-\infty;0] \) - график прямая \(y = \) линия
при \(x \in (0;4) \) - график парабола
при \(x \in (4;+\infty) \) - график прямая \(y = 1 \).