Высшая метаматика. Методические указания и контрольные задания. Под редакцией Ю.С. Арутюнова. Вариант 4. Контрольная работа 1.

Задачи 4, 14, 24, 34, 44.

http://www.kvadromir.com/arutunov_sbornik.html

№ 4

\(\vec{a}(10,3,1), \vec{b}(1,4,2), \vec{c}(3,9,2), \vec{d}(19,30,7) \)

\[\vec{a} \cdot \vec{b} \cdot \vec{c} = \begin{vmatrix} 10 & 3 & 1 \\ 1 & 4 & 2 \\ 3 & 9 & 2 \end{vmatrix} = 80 + 18 + 9 - 12 - 180 - 6 = -91 \neq 0 \]

Следовательно \(\vec{a}, \vec{b}, \vec{c} \) образуют базис.

Найдём координаты вектора \(\vec{d} \) в этом базисе:

\[\alpha_1 = a_1 e_1^* + a_2 e_2^* + a_3 e_3^* \]
\[\alpha_2 = a_1 e_2^* + a_2 e_2^* + a_3 e_3^* \]
\[\alpha_3 = a_1 e_3^* + a_2 e_2^* + a_3 e_3^* \]

где \((\alpha_1, \alpha_2, \alpha_3) \) – координаты вектора \(\vec{d} \) в старом базисе;

\((e_1^*, e_2^*, e_3^*) \) – координаты вектора \(\vec{a}, (e_2^*, e_2^*, e_3^*) \) – координаты вектора \(\vec{b}, (e_3^*, e_3^*, e_3^*) \) – координаты вектора \(\vec{c} \).

\[
\begin{align*}
19 &= 10a_1 + a_2 + 3a_3 \\
3 &= 3a_1 + 4a_2 + 9a_3 \\
7 &= a_1 + 2a_2 + 2a_3
\end{align*}
\]

Решаем методом Крамера:

\[
\Delta = \begin{vmatrix} 10 & 1 & 3 \\ 3 & 4 & 9 \\ 1 & 2 & 2 \end{vmatrix} = 80 + 9 + 18 - 12 - 180 - 6 = -91
\]

\[\Delta_1 = \begin{vmatrix} 10 & 1 & 3 \\ 7 & 4 & 9 \\ 1 & 2 & 2 \end{vmatrix} = 152 + 63 + 180 - 84 - 342 - 60 = -91 \]

\[\Delta_2 = \begin{vmatrix} 10 & 1 & 3 \\ 3 & 30 & 9 \\ 1 & 7 & 2 \end{vmatrix} = 600 + 171 + 63 - 90 - 6 - 30 - 114 = 0 \]

\[\Delta_3 = \begin{vmatrix} 10 & 1 & 3 \\ 4 & 30 & 30 \\ 1 & 2 & 7 \end{vmatrix} = 280 + 30 + 114 - 76 - 600 - 21 = -273 \]

\[a_1 = \frac{\Delta_1}{\Delta} = \frac{-91}{-91} = 1; \quad a_2 = \frac{\Delta_2}{\Delta} = \frac{0}{-91} = 0 \]

\[a_3 = \frac{\Delta_3}{\Delta} = \frac{-273}{-91} = 3 \]

Координаты вектора в базисе \(\vec{a}, \vec{b}, \vec{c} \):

\[\vec{d} = (1; 0; 3). \]

http://www.kvadromir.com – физика и математика для заочников
Задачи 4, 14, 24, 34, 44.

http://www.kvadromir.com/arutunov_sbornik.html

№14

$A(3;5;4), A_2 (8;7;4), A_3 (5;10;4), A_4 (4;7;8)$

1) Длина ребра A_1A_2

$$|A_1A_2| = \sqrt{(8 - 3)^2 + (7 - 5)^2 + (4 - 4)^2} = \sqrt{25 + 4} = \sqrt{29} \approx 5,385$$

2) Угол между рёбрами A_1A_2 и A_1A_4

$$\cos \alpha = \frac{A_1A_2 \cdot A_1A_4}{|A_1A_2||A_1A_4|}$$

$A_1A_2 = (8 - 3; 7 - 5; 4 - 4) = (5,2,0)$

$A_1A_4 = (4 - 3; 7 - 5; 4 - 4) = (1,2,4)$

$\frac{A_1A_2 \cdot A_1A_4}{|A_1A_2||A_1A_4|} = 5*1 + 2*2 + 0*4 = 5 + 4 = 9$

$|A_1A_4| = \sqrt{1 + 4 + 16} = \sqrt{21}$

$$\cos \alpha = \frac{9}{\sqrt{29\sqrt{21}}} \approx 0,3647$$

$\alpha = \arccos(0,36) \approx 68^037'$

3) Угол между рёбрами A_1A_4 и гранью $A_1A_2A_3$.

Найдём уравнение грани $A_1A_2A_3$.

Пусть $M(x, y, z)$ - произвольная точка искомой плоскости.

$A_1M = (x - 3, y - 5, z - 4)$

$A_1A_2 = (5,2,0); A_1A_3 = (2,5,0)$

$A_1M * A_1A_2 * A_1A_3 = \begin{vmatrix}
 x - 3 & y - 5 & z - 4 \\
 5 & 2 & 0 \\
 2 & 5 & 0 \\
\end{vmatrix} = (x - 3)0 - (y - 5)0 + (z - 4)21 = 0$

$z = 4$

Найдём уравнение стороны A_1A_4

$x - x_1 = \frac{y - y_1}{y_4 - y_1} \frac{z - z_1}{z_4 - z_1}$

$x - 3 = \frac{y - 5}{7 - 5} \frac{z - 4}{8 - 4} \Rightarrow x - 3 = \frac{y - 5}{2} = \frac{z - 4}{4}$

$\pi = (0;0;21)$

$A_1A_4 = (1;2;4)$

$n * A_1A_4 = 0 * 1 + 0 * 2 + 21 * 4 = 84$;

Угол найдём по формуле:

$$\sin \varphi = \frac{|A_1 + Bm + Cn|}{\sqrt{A^2 + B^2 + C^2} \sqrt{l^2 + m^2 + n^2}} = \frac{84}{\sqrt{0^2 + 0^2 + 21^2} \sqrt{1^2 + 2^2 + 4^2}} = \frac{84}{21\sqrt{21}} = \frac{4}{21};$$

$\varphi = \arcsin \frac{4}{21} = \arcsin 0.8729 \approx 60^048'$

http://www.kvadromir.com - физика и математика для заочников
Задачи 4, 14, 24, 34, 44.
http://www.kvadromir.com/arutunov_sbornik.html

\[\phi = \arcsin \left(\frac{4}{\sqrt{6}} \right) \]

4) Площадь грани \(A_1A_2A_3 \)

\[S = \frac{1}{2} \left| \overrightarrow{A_1A_2} \times \overrightarrow{A_1A_3} \right| = \frac{1}{2} \left| \begin{vmatrix} i & j & k \\ 5 & 2 & 0 \\ 2 & 5 & 0 \end{vmatrix} \right| = 21 \]

\[S = \frac{1}{2} \sqrt{21^2} = \frac{21}{2} \text{ (кв.ед.)} \]

5) \[V = \frac{1}{6} \left| \left[A_1A_2, A_1A_3, A_1A_4 \right] \right| = \frac{1}{6} \left| \begin{vmatrix} 5 & 2 & 0 \\ 2 & 5 & 0 \\ 1 & 2 & 4 \end{vmatrix} \right| = \frac{1}{6} (100 - 16) = 14 \text{ (кв.ед.)} \]

6) \[\frac{x-3}{8-3} = \frac{y-5}{7-5} = \frac{z-4}{4-4} \Rightarrow \frac{x-3}{5} = \frac{y-5}{2} = \frac{z-4}{0} \]

8) \[\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}, \text{ где} \]

\((x_0, y_0, z_0) \) — координаты вершины \(A_4 \)

\((l, m, n) = (A, B, C) = (0, 0, 21) \)

\[\begin{cases} \frac{x-4}{0} = \frac{y-7}{0} = \frac{z-8}{21} \\ z-8 = 21t \\ z = 8 + 8 + 21t \\ x = 4 \\ y = 7 \end{cases} \]
Задачи 4, 14, 24, 34, 44.
http://www.kvadromir.com/arutunov_sbornik.html

№24
Даны две вершины A(-3;3) и B(5;-1) и точка D(4;3) пересечения высот треугольника. Составить уравнения его сторон.

Решение:
Уравнение стороны AB составим как уравнение прямой, проходящей через 2 данные точки A₁(x₁, y₁), B(x₂; y₂)

\[
\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}
\]

Подставляя координаты точек:
A(-3;3) и B(5;-1) получим \(\frac{x + 3}{8} = \frac{y - 3}{-4} \) или

\[-4(x + 3) = 8(y - 3) \]

Уравнение высоты, опущенной на сторону AC найдём как уравнение прямой, проходящей через точки B(5;-1) и D(4;3)

\[
\frac{x - 4}{1} = \frac{y - 3}{-4} \quad \text{или} \quad -4x + 16 = y - 3
\]

BD : 4x + y − 19 = 0 - уравнение высоты, опущенной на сторону AC.

Запишем это уравнение в виде уравнения прямой с угловым коэффициентом y = kx + b
\[y = -4x + 19 \]

Из условия перпендикулярности двух прямых

\[k_2 = -\frac{1}{k_1} \quad k_1 = -4, k_2 = \frac{1}{4} \]

Так как AC ⊥ BD, то уравнение AC:
\[y - 3 = \frac{1}{4} (x - (-3)) \quad \text{или} \quad y - 3 = \frac{1}{4} (x + 3); \]
\[x - 4y + 15 = 0 \] - уравнение стороны AC.
Задачи 4, 14, 24, 34, 44.
http://www.kvadromir.com/arutunov_sbornik.html

Запишем уравнение высоты на сторону ВС:
\[\frac{x - 4}{-3 - 4} = \frac{y - 3}{3 - 3} = \frac{x - 4}{-7} = \frac{y - 3}{0} \]
или
-7(y - 3) = 0 \quad y = 3
Угловой коэффициент этой прямой равен нулю, значит высота, опущенная на сторону ВС параллельна оси X, поэтому \(x - 5 = 0 \) - уравнение стороны ВС.

Задачи 4, 14, 24, 34, 44.
http://www.kvadromir.com/arutunov_sbornik.html

№34

Пусть M(x, y) - произвольная точка искомой кривой.
\[|AM| = \sqrt{(x - 4)^2 + (y - 0)^2} \]
\[|BM| = \sqrt{(x - 1)^2 + (y - 0)^2} \]

По условию задачи \[|AM| = 2 |BM| \]

Получаем:
\[\sqrt{(x - 4)^2 + y^2} = 2 \sqrt{(x - 1)^2 + y^2} \]
\((x - 4)^2 + y^2 = 4(x - 1)^2 + 4y^2 \)
\(x^2 - 8x + 16 + y^2 = 4x^2 - 8x + 4 + 4y^2 \)
\(3x^2 + 3y^2 = 12 \)
\(x^2 + y^2 = 4 \) - искомая линия.
Это окружность с центром в точке (0;0) и радиуса R = 2.

http://www.kvadromir.com - физика и математика для заочников
Задачи 4, 14, 24, 34, 44.
http://www.kvadromir.com/arutunov_sbornik.html

Но 44

\[r = \frac{8}{3 - \cos \phi} \]

1)

<table>
<thead>
<tr>
<th>φ</th>
<th>0</th>
<th>π/8</th>
<th>π/4</th>
<th>3π/8</th>
<th>π/2</th>
<th>5π/8</th>
<th>3π/4</th>
<th>7π/8</th>
<th>π</th>
<th>9π/8</th>
<th>5π/4</th>
<th>11π/8</th>
<th>3π/2</th>
<th>7π/4</th>
<th>15π/8</th>
<th>2π</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>4</td>
<td>3,9</td>
<td>3,5</td>
<td>3,1</td>
<td>2,7</td>
<td>2,6</td>
<td>2,2</td>
<td>2,04</td>
<td>2</td>
<td>2,04</td>
<td>2,2</td>
<td>2,6</td>
<td>2,7</td>
<td>3,1</td>
<td>3,5</td>
<td>3,9</td>
</tr>
</tbody>
</table>

2) \[\begin{align*}
x &= r \cos \phi \\
y &= r \sin \phi
\end{align*} \]

⇒ \[\cos \phi = \frac{x}{r} \]

\[r = \frac{8}{3 - \frac{x}{r}} ; \quad r = \sqrt{x^2 + y^2} \]

\[\sqrt{x^2 + y^2} = \frac{8}{3 - \frac{x}{\sqrt{x^2 + y^2}}} \]

\[\sqrt{x^2 + y^2} = \frac{8\sqrt{x^2 + y^2}}{3\sqrt{x^2 + y^2} - x} \]

\[3\sqrt{x^2 + y^2} - x = 8 \]

\[3\sqrt{x^2 + y^2} = 8 + x \]

\[9x^2 + 9y^2 = 64 + x^2 + 16x \]

\[8x^2 + 9y^2 - 16x = 64 \]

\[8(x^2 - 2x + 1) + 9y^2 = 64 + 8 \]

\[8(x - 1)^2 + 9y^2 = 72 \]

\[\frac{(x - 1)^2}{9} + \frac{y^2}{8} = 1 \]

Это эллипс с центром в точке (1; 0) и полусами \(a^2 = 9 \) и \(b^2 = 8 \); \(a = 3; \ b = 2\sqrt{2} \).