№107

\[Y = \frac{3}{2} \cos \left(\frac{x}{2} + 1 \right) \]

В качестве исходного возьмём график \(y = \cos x \). Затем строим график функции \(y = \cos \frac{x}{2} \) растяжением вдоль оси абсцисс в 2 раза.

1) \(y = \cos x \)

После этого строим график функции \(y = \cos \frac{1}{2} (x + 2) \) сдвигом на 2 единицы влево. И, наконец, растяжением в \(\frac{3}{2} \) раза вдоль оси ординат последнего графика, получаем искомый график функции \(y = \frac{3}{2} \cos \left(\frac{x}{2} + 1 \right) \)

http://kvadromir.com — физика и математика для заочников
Задачи 107, 117, 127, 137

http://kvadromir.com/arutunov_sbornik.html

№ 117

\[a) \lim_{x \to \infty} \frac{x - 2x^2 + 5x^4}{2 + 3x^2 + x^4} = \lim_{x \to \infty} \frac{\frac{1}{x^4} - \frac{2}{x^3} + 5}{\frac{2}{x^4} + \frac{3}{x^3} + 1} = 5 \]

\[b) \lim_{x \to 0} \frac{\sqrt{1 + 3x^2} - 1}{x^2 + x^3} = \lim_{x \to 0} \frac{\sqrt{1 + 3x^2} - 1}{x^2} \cdot \frac{1}{\sqrt{1 + 3x^2} + 1} = \lim_{x \to 0} \frac{\frac{3x^2}{\sqrt{1 + 3x^2} + 1}}{x^2 (1 + x)(\sqrt{1 + 3x^2} + 1)} = \frac{3}{3} = 1 \]

\[c) \lim_{x \to 0} \frac{1 - \cos 6x}{1 - \cos 2x} = \lim_{x \to 0} \frac{2 \sin^2 3x}{2 \sin^2 x} = \lim_{x \to 0} \frac{\sin^2 3x}{(3x)^2} \cdot \frac{x^2}{\sin^2 x} = \frac{1}{(3x)^2} \cdot \frac{x^2}{\sin^2 x} = 9 \]

\[d) \lim_{x \to \infty} (x - 5) \ln(x - 3) - \ln x = \lim_{x \to \infty} (x - 5) \ln \left(\frac{x - 3}{x} \right)^{x - 5} = \lim_{x \to \infty} \left[\left(\frac{1 - \frac{3}{x}}{\frac{3}{x}} \right)^{\frac{x}{3}} \right]^{-3} \left(1 - \frac{3}{x} \right)^{-5} \]

= \ln e^{-3} - 1 = -3.

http://kvadromir.com — физика и математика для заочников
№127

\[f(x) = 14^{\frac{1}{6-x}}; \quad x_1 = 4; \quad x_2 = 6 \]

1) Функция определена для х₁, за исключением \(x = 6 \), т.е. \(D(y) = (-\infty; 6) \cup (6; +\infty) \)

Таким образом, \(x_2 = 6 \) является точкой разрыва функции; \(x_1 \) — не является точкой разрыва.

2) \(\lim_{x \to 6^-} 14^{\frac{1}{6-x}} = +\infty \)

\(\lim_{x \to 6^+} 14^{\frac{1}{6-x}} = 0 \)

3) \(\lim_{x \to \infty} f(x) = \lim_{x \to \infty} 14^{\frac{1}{6-x}} = 1 \)

\(\Rightarrow y = 1 \) - горизонтальная асимптота графика.
http://kvadromir.com/arutunov_sbornik.html

№137

\[f(x) = \begin{cases}
-(x+1), & \text{если } x \geq -1 \\
(x+1)^2, & \text{если } -1 < x \leq 0 \\
x, & \text{если } x > 0
\end{cases} \]

Функция неопределена инепрерывна внутри интервалов (−∞;−1);(1;0) и (0;+∞). Исследуем её на непрерывность точках \(x_1 = -1; x_2 = 0 \)

\[\lim_{x \to -1^-} f(x) = \lim_{x \to -1^+} \frac{1}{(x+1)^2} = 0 \]

\[\lim_{x \to -1^-} f(x) = \lim_{x \to -1^+} (x+1)^2 = 0 \]

⇒ \(x = -1 \) не является точкой разрыва.

\[\lim_{x \to 0^-} f(x) = \lim_{x \to 0} x = 0 \]

⇒ \(x = 0 \) - точка разрыва функции.

http://kvadromir.com — физика и математика для заочников