ФИЗИКА.
Методические указания и контрольные задания

для студентов-заочников инженерно-технических специальностей высших учебных заведений (включая сельскохозяйтвенные ВУЗЫ)

под редакцией А.Г. Чертова.


ВАРИАНТ 1


101
Тело брошено вертикально вверх с начальной скоростью v0 = 4 м/с. Когда оно достигло верхней точки полета из того же начального пункта, с той же скоростью вертикально вверх было брошено второе тело. На каком расстоянии h от начального пункта встретятся тела? Сопротивлением воздуха пренебречь.

111
При горизонтальном полете со скоростью v = 250 м/с снаряд массой m = 8 кг разорвался на две части. Большая часть массой m1 = 6 кг получила скорость u1 = 400 м/с в направлении полета снаряда. Определить модуль и направление скорости u2 меньшей части снаряда.

121
В деревянный шар массой m1 = 8 кг, подвешенный на нити длиной l = 1,8 м, попадает горизонтально летящая пуля массой m2 = 4 г. С какой скоростью летела пуля, если нить с шаром и застрявшей в нем пулей отклонилась от вертикали на угол α = 3o? Размером шара пренебречь. Удар пули считать прямым, центральным.

131
Определить работу растяжения двух соединенных последовательно пружин жесткостями k1 = 400 Н/м и k2= 250 Н/м, если первая пружина при этом растянулась на Δl = 2 см.

141
Шарик массой m = 60 г, привязанный к концу нити длиной l = 1,2 м, вращается с частотой n1 = 2 c-1, опираясь на горизонтальную плоскость. Нить укорачивается, приближая шарик к оси до расстояния l2 = 0,6 м. С какой частотой n2 будет при этом вращаться шарик? Какую работу А совершает внешняя сила, укорачивая нить? Трением шарика о плоскость пренебречь.

151
На скамье Жуковского сидит человек и держит на вытянутых руках гири массой m = 5 кг каждая. Расстояние от каждой гири до оси скамьи l = 70 см. Скамья вращается с частотой n1 = 1 с-1. Как изменится частота вращения скамьи и какую работу А произведет человек, если он сожмет руки так, что расстояние от каждой гири до оси уменьшится до l2=20см? Момент инерции человека и скамьи (вместе) относительно оси J = 2,5 кг·м2.

161
Определить напряженность G гравитационного поля на высоте h = 1000 км над поверхностью Земли. Считать известными ускорение g свободного падения у поверхности Земли и её радиус R.

171
На стержне длиной l= 30 см укреплены два одинаковых грузика: один – в середине стержня, другой – на одном из его концов. Стержень с грузами колеблется около горизонтальной оси, проходящей через свободный конец стержня. Определить приведенную длину L и период T простых гармонических колебаний данного физического маятника. Массой стержня пренебречь.

201
Определить количество вещества υ и число N молекул кислорода массой m = 0,5 кг.

211
В цилиндр длиной l = 1,6 м, заполненный воздухом при нормальном атмосферном давлении р0, начинают медленно вдвигать поршень площадью основания S = 200 см2. Определить силу F, действующую на поршень, если его остановить на расстоянии l1 = 10 см от дна цилиндра.

221
Определить внутреннюю энергию U водорода, а также среднюю кинетическую энергию молекулы этого газа при температуре Т = 300 К, если количество вещества ν этого газа равно 0,5 моль.

231
Определить молярную массу М двухатомного газа и его удельные теплоемкости, если известно, что разность ср–сV удельных теплоемкостей этого газа равна 260 Дж/(кг·К).

241
Найти среднее число столкновений за время t= 1 с и длину свободного пробега молекулы гелия, если газ находится под давлением р= 2 кПа при температуре Т= 200 К.

251
Определить количество теплоты Q, которое надо сообщить кислороду объемом V = 50 л при его изохорном нагревании, чтобы давление газа повысилось на Δр = 0,5 МПа.

261
Идеальный газ совершает цикл Карно при температурах теплоприемника Т2 = 290 К и теплоотдатчика Т1 = 400 К. Во сколько раз увеличится коэффициент полезного действия η цикла, если температура теплоотдатчика возрастет до Т'1=600 К?

271
Найти массу m воды, вошедшей в стеклянную трубку с диаметром канала d = 0,8 мм, опущенной в воду на малую глубину. Считать смачивание полным.

301
Точечные заряды Q1 = 20 мкКл, Q2 = –10 мкКл находятся на расстоянии d = 5 см друг от друга. Определить напряженность поля в точке, удаленной на r1 = 3 см от первого и на r2=4см от второго заряда. Определить также силу F, действующую в этой точке на точечный заряд Q = 1 мкКл.

311
Тонкий стержень длиной l = 20 см несет равномерно распределенный заряд τ=0,1 мкКл/м. Определить напряженность электрического поля, создаваемого распределенным зарядом в точке А, лежащей на оси стержня на расстоянии а = 20 см от его конца.>

321
На двух концентрических сферах радиусом R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2. Требуется: 1) используя теорему Остроградского-Гаусса, найти зависимость Е(r) напряженности электрического поля от расстояния для трёх областей: I, II и III. Принять σ1=4σ, σ2=σ; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r, и указать направление вектора Е. Принять σ=30 нКл/м2, r=1,5R; 3) Построить график Е(r).

331
Два точечных заряда Q1 = 6 нКл и Q2 = 3 нКл находятся на расстоянии d = 60 см друг от друга. Какую работу необходимо совершить внешним силам, чтобы уменьшить расстояние между зарядами вдвое?

341
Пылинка массой m = 200 мкг, несущая на себе заряд Q = 40 нКл, влетела в электрическое поле в направлении силовых линий. После прохождения разности потенциалов U = 200 В пылинка имела скорость v = 10 м/с. Определить скорость v0 пылинки до того, как она влетела в поле.

351
Конденсаторы емкостью С1 = 5 мкФ и С2 = 10 мкФ заряжены до напряжений U1 = 60 B и U2 = 100 B соответственно. Определить напряжение на обкладках конденсаторов после их соединения обкладками, имеющими одноименные заряды.

361
Катушка и амперметр соединены последовательно и подключены к источнику тока. К клеммам катушки присоединен вольтметр с сопротивлением r = 4 кОм. Амперметр показывает силу току I = 0,3 A, вольтметр – напряжение U = 120 B. Определить сопротивление R катушки. Определить относительную погрешность ε, которая будет допущена при измерении сопротивления, если пренебречь силой тока, текущего через вольтметр.

371
За время t= 20 c при равномерно возраставшей силе тока от нуля до некоторого максимума в проводнике сопротивлением R= 5 Ом выделилось количество теплоты Q=4кДж. Определить скорость нарастания силы тока, если сопротивлением проводника R=5Ом.

401
Бесконечно длинный провод с током I=100 A изогнут так, как показано на рис.49. Определить магнитную индукцию В в точке О. Радиус дуги R= 10 см.

411
По двум параллельным проводам длиной l = 3 м каждый текут одинаковые токи I = 500 A. Расстояние между проводами равно 10 см. Определить силу F взаимодействия проводов.

421
По тонкому кольцу радиусом R=10 см равномерно распределен заряд с линейной плотностью τ=50 нКл/м. Кольцо вращается относительно оси, перпендикулярной плоскости кольца и проходящей через его центр, с частотой n= 10 c-1. Определить магнитный момент pm, обусловленный вращением кольца.

431
Два иона разных масс с одинаковыми зарядами влетели в однородное магнитное поле, стали двигаться по окружностям радиусами R1= 3 см и R2= 1,73 см. Определить отношение масс ионов, если они прошли одинаковую ускоряющую разность потенциалов.

441
Протон влетел в скрещенные под углом α=120o магнитное (В=50 мТл) и электрическое (Е= 20 кВ/м) поля. Определить ускорение а протона, если его скорость v (|v|= 4·105 м/с) перпендикулярна векторам Е и В.

451
Плоский контур площадью S=20 см2 находится в однородном магнитном поле (В=0,03 Тл). Определить магнитный поток Ф, пронизывающий контур, если плоскость его составляет угол α=60o с направлением линий индукции.

461
В однородном магнитном поле (В=0,1 Тл) равномерно с частотой n=5 c-1 вращается стержень длиной l= 50 см так, что плоскость его вращения перпендикулярна линиям напряженности, а ось вращения проходит через один из его концов. Определить индуцируемую на концах стержня разность потенциалов U.>

471
Соленоид сечением S= 10 см2 содержит N=103 витков. При силе тока I= 5 А магнитная индукция В поля внутри соленоида равна 0,05 Тл. Определить индуктивность соленоида.

501
Между стеклянной пластиной и лежащей не ней плосковыпуклой линзой находится жидкость. Найти показатель преломления жидкости, если радиус r3 третьего темного кольца Ньютона при наблюдении в отраженном свете с длиной волны λ=0,6 мкм равен 0,82 мм. Радиус кривизны линзы R=0,5 м.

511
Какое наименьшее число Nmin штрихов должна содержать дифракционная решетка, чтобы в спектре второго порядка можно было видеть раздельно две желтые линии натрия с длинами волн λ1=589,0 нм и λ2=589,6 нм? Какова длина l такой решетки, если постоянная решетки d=5мкм?

521
Пластинку кварца толщиной d= 2 мм поместили между параллельными николями, в результате чего плоскость поляризации монохроматического света повернулась на угол φ=53o. Какой наименьшей толщины dmin следует взять пластинку, чтобы поле зрения поляриметра стало совершенно темным?

531
Частица движется со скоростью v=c/3, где с - скорость света в вакууме. Какую долю энергии покоя составляет кинетическая энергия частицы?

541
Вычислить истинную температуру Т вольфрамовой раскаленной ленты, если радиационный пирометр показывает температуру Трад = 2,5 кК. Принять, что поглощательная способность для вольфрама не зависит от частоты излучения и равна аi=0,35.

551
Красная граница фотоэффекта для цинка λ0 = 310 нм. Определить максимальную кинетическую энергию Тmax фотоэлектронов в электрон-вольтах, если на цинк падает свет с длиной волны λ = 200 нм.

561
Фотон при эффекте Комптона на свободном электроне был рассеян на угол θ=π/2. Определить импульс р (в МэВ/с), приобретенный электроном, если энергия фотона до рассеяния была ε1 = 1,02 МэВ.

571
Определить энергетическую освещенность (облученность) Ее зеркальной поверхности, если давление р, производимое излучением, равно 40 мкПа. Излучение падает нормально к поверхности.

601
Невозбужденный атом водорода поглощает квант излучения с длиной волны λ = 102,6 нм. Вычислить, пользуясь теорией Бора, радиус r электронной орбиты возбужденного атома водорода.

611
Вычислить наиболее вероятную дебройлевскую длину волны λ молекулы азота, содержащихся в воздухе при комнатной температуре.

621
Оценить с помощью соотношения неопределенностей минимальную кинетическую энергию электрона, движущегося внутри сферы радиусом R = 0,05 нм.

631
Частица находится в бесконечно глубоком, одномерном, прямоугольном потенциальном ящике. Найти отношение разностей ΔЕn,n+1 соседних энергетических уровней к энергии En частицы в трех случаях: 1) n = 2; 2) n = 5; 3) n−>∞.

641
Найти период полураспада Т1/2 радиоактивного изотопа, если его активность за время t = 10 сут уменьшилась на 24% по сравнению с первоначальной.

651
Определить количество теплоты Q, выделяющейся при распаде радона активностью А = 3,7·1010 Бк за время t = 20 мин. Кинетическая энергия Т вылетающей из радона α-частицы равна 5,5 МэВ.

661
Определить теплоту Q, необходимую для нагревания кристалла калия массой m = 200 г от температуры T1 = 4 К до температуры T2 = 5 К. Принять характеристическую температуру Дебая для калия ΘD = 100 К и считать условие Т<<ΘD выполненным.

671
Определить долю свободных электронов в металле при температуре Т = 0 К, энергии ε которых заключены в интервале значений от 0,5εmax до εmax.




Вариант 0     Вариант 1     Вариант 2     Вариант 3     Вариант 4


Вариант 5     Вариант 6     Вариант 7     Вариант 8     Вариант 9